Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 12, 2026
-
We all have moments when we are struck by a “gut feeling” or a “sixth sense” about something. It could pertain to a relationship or task at work. That sense can be broadly termed intuition. Intuitive decisionmaking is an essential characteristic of individuals who have attained a certain level of expertise. The development of expertise and intuition are heavily influenced by experience. Engineering intuition is defined as an experience-informed skill subconsciously leveraged in problem solving by engineering practitioners when under pressure from constraints such as lack of time. Practicing engineers use and develop intuition regularly on-the-job, but the use of intuition is often discouraged in undergraduate education. The disconnect between intuition’s use in engineering practice and in education, coupled with our limited knowledge of the relationship between intuition, expertise, and experience, presents an important gap in our existing understanding of engineering problem solving and future workforce preparation. Through this Research in the Formation of Engineers (RFE) grant, we seek to address this gap by examining the application of intuition by engineering practitioners to generate knowledge that promotes professional formation and development of a stronger engineering workforce.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The start of the COVID-19 pandemic with its unique constraints led teachers of all disciplines, across all levels to employ diverse strategies in their quick transition to online learning. Emerging literature has suggested readiness and resources for the transition to remote learning along with intrinsic and extrinsic factors such as motivation and engagement to be frequent challenges faced by teachers. The purpose of this work is twofold: a) conduct a review of the post-pandemic literature to summarize the challenges of teaching engineering during the pandemic, and b) summarize the experiences of secondary teachers when teaching a pre-college engineering curriculum at the beginning of the pandemic. Collectively the literature review and experimental findings enable greater understanding and sense-making of adaptations made to prepare for future abrupt changes that may arise. Focus group data (n= 39) of high school engineering teachers were analyzed using sensemaking theory to reveal several challenges faced and strategies adopted during this unprecedented time. Our review findings suggest Lack of Engagement and Motivation, Scheduling, the Right Resources, and Training with Technology were the most frequent challenges noted in the literature. Our empirical findings showed similar challenges faced by pre-college teachers which were summarized into four themes: Teaching logistics, Time Management, Available Support, and Regulations. The themes provide the foundation for mitigation strategies for teachers during a crisis or abrupt change in the future.more » « less
-
This research paper reports the in-progress validation of a quantitative instrument designed to assess the perceived impact of participating in a National Science Foundation (NSF)-funded Engineering Research Center (ERC). A multi-institutional consortium composed of ERC education directors, researchers, and evaluators from six NSF-funded ERCs designed easily accessible evaluation instruments and tools that specifically help measure anticipated outcomes for ERC participants for all ERCs. The total effort underway by the consortium includes creating a suite of qualitative and quantitative instruments, an evaluator toolkit, and a user-friendly online platform to host the inventory materials. This paper focuses on the quantitative instrument created to evaluate the experiences of those who engage with a center. It consists of Likert-type questions assessing the impact of the ERC on participants' self-reported: 1) understanding of the ERC, 2) research and communication skills, 3) climate of inclusion, 4) mentorship experiences, and 5) program satisfaction. The instrument also included additional demographic questions and questions to capture STEM-related future plans. The instrument was designed using multiple rounds of design iterations and pilot tests. Separate surveys used by individual ERCs were compiled and categorized to ensure all requirements from the National Science Foundation were met. The web-based survey was administered to six ERCs during the Summer of 2021, Fall of 2021, and Spring of 2022. A total of 549 responses were collected; 535 were used following data cleaning procedures. Sample sizes for each component of the survey varied because some ERCs chose to only use some parts of the new instrument. Exploratory Factor Analyses (EFA) were performed to identify latent factors and items that needed further revision. The following factors emerged from our analyses: 1) ERC general understanding; 2) development of research skills; 3) development of professional skills; 4) experience in the ERC; 5) feelings toward the ERC; 6) Beliefs about the ERC, 7) mentors performance; and 8) mentorship experience. The results provide preliminary evidence that the survey can be used across ERCs. This effort is the first that has been undertaken to develop a shared ERC instrument. The data collected was used to continue in-progress validation. The collaborative nature of this effort can provide ways for ERCs to benchmark impacts of their efforts and share effective practices across ERCs and other similarly structured STEM centers going forward.more » « less
An official website of the United States government

Full Text Available